Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

William D. Jones, ${ }^{\text {a }}$ Juventino Garcia b and Hugo Torrens ${ }^{b}$ *

${ }^{\text {a }}$ Department of Chemistry, University of Rochester, Rochester, NY 14627, USA, and
${ }^{\text {b }}$ Facultad de Química, UNAM, Ciudad
Universitaria, 04510 México DF, Mexico
Correspondence e-mail:
torrens@servidor.unam.mx

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.022$
$w R$ factor $=0.052$
Data-to-parameter ratio $=10.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[μ-2,3,5,6-tetrafluoro-4-(trifluoromethyl)benzenethiolato $]$ bis $\left[\left(\eta^{4}-3,5-c y c l o o c t a d i e n e\right)-\right.$ rhodium(I)]

In the structure of the title compound, $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{7} \mathrm{~F}_{7} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$, important geometric parameters are $\mathrm{Rh} \cdots \mathrm{Rh}=2.9595$ (3) \AA, mean $\mathrm{Rh}-\mathrm{S}=2.3949$ (8) \AA, mean $\mathrm{S}-\mathrm{C}=1.764$ (3) \AA and mean $\mathrm{S}-\mathrm{Rh}-\mathrm{S}=87.37(3)^{\circ}$. The $\mathrm{S}-\mathrm{Rh}-\mathrm{S}$ planes intersect at an angle of 117.4 (3) ${ }^{\circ}$.

Comment

We have a long-standing interest in dinuclear transition metal complexes bearing fluorinated thiolates (Garcia et al., 1993; Arroyo et al., 2000; Villanueva et al., 2004), since this type of compound is relevant, for example, to the development of chemical systems involving $\mathrm{C}-\mathrm{F}$ bond activation (Richmond, 1999; Torrens, 2005) or to the study of fluorous biphasic catalytic processes (Barthel-Rosa \& Gladysz, 1999). While working with this class of compounds, we have found that the metathetical reactions of $\left[\left(\mathrm{C}_{8} \mathrm{H}_{12}\right) \mathrm{Rh}(\mu \text {-OMe })_{2} \mathrm{Rh}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$ with $\mathrm{HSC}_{6} \mathrm{~F}_{4} \mathrm{CF}_{3}-4$, or $\left[\left(\mathrm{C}_{8} \mathrm{H}_{12}\right) \mathrm{Rh}(\mu-\mathrm{Cl})_{2} \mathrm{Rh}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$ with $\mathrm{Pb}\left(\mathrm{SC}_{6} \mathrm{~F}_{4} \mathrm{CF}_{3}-4\right)_{2}$, give rise to the expected title dinuclear complex $\left[\left(\mathrm{C}_{8} \mathrm{H}_{12}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{6} \mathrm{~F}_{4} \mathrm{CF}_{3}-4\right)_{2} \mathrm{Rh}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$, (I).

Received 20 September 2005 Accepted 30 September 2005 Online 8 October 2005

(I)

syn-endo

syn-exo

bent-anti

planar-syn

planar-anti

The single-crystal X-ray structure analysis of (I) (Fig. 1) shows it to adopt a syn-endo geometry. The coordination around each Rh atom is approximately square-planar (Table 1). The intermetallic distance of 2.9595 (3) \AA is too

Figure 1
A view of the structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

Figure 2

The definitions of the angles A_{2} and A_{3} used in Table 2.
large to indicate interaction between metal atoms (Cotton \& Felthouse, 1981). The coordination planes through the Rh and S atoms are folded along the $\mathrm{S} \cdots \mathrm{S}$ vector at a dihedral angle of $117.4(3)^{\circ}$. The observed $\mathrm{Rh} \cdots \mathrm{Rh}$ distance, as well as the dihedral angle, agree well with the values reported for other known examples (Table 2). The $\mathrm{Rh}-\mathrm{S}$ [range 2.3917 (8)2.3977 (8) A] and S. . S [3.308 (3) Å] distances are in good agreement with those observed previously (Cruz-Garritz et al., 1991, 1984; Bonnet et al., 1977; Hill et al., 1977). The S atoms have a tetrahedral geometry. The $\mathrm{C}-\mathrm{C}$ distances in the aromatic ring fall in the normal range of 1.36-1.39 A (Allen et al., 1987), and the cyclooctadiene rings show shorter $\mathrm{C}-\mathrm{C}$ distances for the metal-bound olefins (1.38-1.40 \AA).

Possible structures for this class of compound include synendo, syn-exo, bent-anti, planar-syn and planar-anti (Aullón et al., 1998). As mentioned above, the fluorinated benzene
rings of the thiolate bridges are in a syn-endo configuration with respect to the four-membered $[\mathrm{RhS}]_{2}$ core, and the mean planes of the benzene rings are approximately perpendicular to the $\mathrm{S} \cdots \mathrm{S}$ vector. For comparison, several bis-thiolate complexes of the type $[\mathrm{Rh}(\text { dippe })(\mu-\mathrm{S} R)]_{2}$, where dippe $=$ ${ }^{i} \mathrm{Pr}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}^{i} \mathrm{Pr}_{2}, R=\mathrm{H}$, Me, cyclohexyl, o-biphenyl or phenyl, or $(\mathrm{SR})_{2}=\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$, have been synthesized and characterized by single-crystal X-ray diffraction (Oster \& Jones, 2004). All $[\mathrm{Rh}(\text { dippe })(\mu-\mathrm{S} R)]_{2}$ complexes except $[\mathrm{Rh}(\text { dippe })(\mu-\mathrm{SPh})]_{2}$ exhibit bent geometries (the exception is planar), while the orientation of the thiolate substituents changes with increasing steric bulk. Note that three of the complexes adopt the syn-endo geometry observed in (I).
${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopies indicate that both ring inversion and sulfur inversion occur among the members of the series, which allows them to access several isomeric forms when they are in solution.

Experimental

Compound (I), $\left[\mathrm{Rh}_{2}\left(\mu-\mathrm{SC}_{6} \mathrm{~F}_{4} \mathrm{CF}_{3}-4\right)_{2}(\operatorname{cod})_{2}\right]$, was prepared as follows. To a solution of $\left[\mathrm{Rh}_{2}(\mu-\mathrm{Cl})_{2}(\operatorname{cod})_{2}\right](\operatorname{cod}$ is cyclooctadiene) $(150 \mathrm{mg}, 0.3 \mathrm{mmol})$ in acetone (25 ml) was added a solution of $\mathrm{Pb}\left(\mathrm{SC}_{6} \mathrm{~F}_{4} \mathrm{CF}_{3}-4\right)_{2}(218 \mathrm{mg}, 0.3 \mathrm{mmol})$ dissolved in acetone $(25 \mathrm{ml})$. The reaction mixture rapidly turned red. A red precipitate formed, and this was filtered off and dried under vacuum to give $\left[\mathrm{Rh}_{2}(\mu-\right.$ $\left.\left.\mathrm{SC}_{6} \mathrm{~F}_{4} \mathrm{CF}_{3}-4\right)_{2}(\operatorname{cod})_{2}\right]$. Single crystals of (I) were obtained by slow evaporation of an acetone solution under a stream of N_{2} (yield 92\%; m.p. $513-515 \mathrm{~K}$). Analysis calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{14} \mathrm{~S}_{2} \mathrm{Rh}_{2}$: C 39.13, H 2.61, S 6.95\%; found: C 39.10, H 2.65, S 7.04. IR (cm^{-1}): 1639 (m), $1474(s), 1323(s), 978(m), 855(w), 714(m) .{ }^{1} \mathrm{H}$ NMR (d_{6}-acetone, δ, p.p.m.): $2.837\left(m, \mathrm{CH}_{2}\right), 2.871\left(m, \mathrm{CH}_{2}\right), 4.70(s, \mathrm{CH}) .{ }^{19} \mathrm{~F}$ NMR $\left(d_{6}-\right.$ acetone, δ, p.p.m.): $-57.41\left(s, \mathrm{CF}_{3}\right),-131.19(m, \mathrm{~F}-2,6),-144.97(m$, F-3,5).

Crystal data

$\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{7} \mathrm{~F}_{7} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$
$M_{r}=920.43$
Monoclinic, $P 2_{1} / c$
$a=12.5718$ (6) A
$b=19.5538$ (10) \AA
$c=13.3217$ (7) A
$\beta=110.5470(10)^{\circ}$
$V=3066.5(3) \AA^{3}$
$Z=4$

$D_{x}=1.994 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 4620 reflections
$\theta=5.3-46.5^{\circ}$
$\mu=1.32 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Prism, red
$0.32 \times 0.32 \times 0.28 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan_
(SADABS; Blessing, 1995)
$T_{\text {min }}=0.613, T_{\text {max }}=0.691$
13638 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.052$
$S=1.04$
4402 reflections
433 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 4402 \text { independent reflections } \\
& 3998 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.018 \\
& \theta_{\max }=23.3^{\circ} \\
& h=-11 \rightarrow 13 \\
& k=-19 \rightarrow 21 \\
& l=-14 \rightarrow 14 \\
& \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0245 P)^{2}\right. \\
& \quad+3.0986 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.49 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Rh1-C2	$2.132(3)$	Rh2-C14	$2.138(3)$
Rh1-C1	$2.135(3)$	Rh2-C9	$2.143(3)$
Rh1-C5	$2.146(3)$	Rh2-C13	$2.149(3)$
Rh1-C6	$2.155(3)$	Rh2-S2	$2.3917(8)$
Rh1-S1	$2.3927(8)$	Rh2-S1	$2.3976(8)$
Rh1-S2	$2.3977(8)$	S1-C17	$1.762(3)$
Rh2-C10	$2.135(3)$	S2-C24	$1.765(3)$
C2-Rh1-C1	$37.90(12)$	C9-Rh2-S2	$89.23(10)$
C5-Rh1-C6	$37.86(12)$	S2-Rh2-S1	$87.38(3)$
C1-Rh1-S1	$91.37(9)$	C17-S1-Rh1	$112.54(10)$
C2-Rh1-S2	$149.71(9)$	C17-S1-Rh2	$105.47(9)$
S1-Rh1-S2	$87.36(3)$	Rh1-S1-Rh2	$76.31(2)$
C10-Rh2-C9	$38.06(13)$	C24-S2-Rh2	$114.32(10)$
C14-Rh2-C13	$37.58(13)$	C24-S2-Rh1	$111.95(9)$
C10-Rh2-S2	$95.16(10)$		

Table 2
Selected angles (${ }^{\circ}$), distances ((\AA) and sums of angles (mean values) about the S atom in $\left[\operatorname{Rh}(\mu-\mathrm{S} R)\left(L_{n}\right)\right]_{2}\left(L_{1}=\operatorname{cod}, L_{2}=\right.$ dippe $)$ complexes.

$\mathrm{S} R, L_{n}$	Isomer	$A_{1} \dagger$	$A_{2} \ddagger$	$A_{3} \ddagger$	$\mathrm{Rh} \cdots \mathrm{Rh}$	$\mathrm{S} \cdots \mathrm{S}$
$\mathrm{SC}_{6} \mathrm{~F}_{5}, L_{1}$	syn-endo	311.7	118.4	$87.4,89.5$	2.954	$3.369 \S$
$\mathrm{SC}_{6} \mathrm{HF}_{4}, L_{1}$	syn-endo	313.0	117.8	$87.6,89.8$	2.956	$3.330 \uparrow$
$\mathrm{SC}_{7} \mathrm{~F}_{7}, L_{1}$	syn-endo	296.0				
SH, L_{2}		syn-exo	302.6	117.4	$86.0,91.4$	2.960
SCH_{3}, L_{2}	bent-anti	302.5	136.0	36.0	$3.308 \dagger \dagger$	
$\mathrm{SC}_{6} \mathrm{H}_{11}, L_{2}$	syn-endo	$327.7_{\text {endo }}$	124.6	83.2 endo	3.298	$3.016 \ddagger \ddagger$
$\mathrm{~S}_{2} \mathrm{C}_{3} \mathrm{H}_{6}, L_{2}$	syn-endo	289.4	126.4	16.9	86.0	3.239
$\mathrm{SC}_{6} \mathrm{H}_{5}, L_{2}$	planar-anti	301.0	129.1	80.6	3.243	$3.299 \ddagger \ddagger$

$\dagger A_{1}$ is the sum of $X-\mathrm{S}-X$ angles at S . \ddagger The angles are defined as shown in Fig. 2. § Cruz-Garritz et al., (1984). © Cruz-Garritz et al., (1991). $\dagger \dagger$ This work. 抹 Oster \& Jones, (2004).

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.99-1.00 \AA and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Financial assistance from CONACYT (44494-Q) and DGAPA-UNAM (IN-119305-3) is gratefully acknowledged, as is the National Science Foundation (Nos. CHE0414325 and OISE0102217). We thank J. M. German for his assistance.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Arroyo, M., Bernes, S., Richards, R. L., Rius, J. \& Torrens, H. (2000). J. Organomet. Chem. 599, 170-177.
Aullón, G., Ujaque, G., Lledos, A., Alvarez, S. \& Alemany, P. (1998). Inorg. Chem. 37, 804-813.
Barthel-Rosa, L. P. \& Gladysz, J. A. (1999). Coord. Chem. Rev. 190-192, 587605.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bonnet, J. J., Kalck, Ph. \& Poilblanc, R. (1977). Inorg. Chem. 16, 1514 1518.

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cotton, F. A. \& Felthouse, T. R. (1981). Inorg. Chem. 20, 2703-2708.
Cruz-Garritz, D., Garcia-Alejandre, J., Poilblanc, R., Thorez, A., Alvarez, C., Toscano, R. \& Torrens, H. (1991). Transition Met. Chem. 16, 130-135.
Cruz-Garritz, D., Leal, J., Rodriguez, B. \& Torrens, H. (1984). Transition Met. Chem. 9, 284-285.
Garcia, J. J., Torrens, H., Adams, H., Bailey, N. A., Shacklady, A. \& Maitlis, P. M. (1993). J. Chem. Soc. Dalton Trans. pp. 1529-1536.

Hill, R., Kelly, B. A, Kennedy, F. G., Knox, S. A. R. \& Woodward, P. (1977). J. Chem. Soc. Chem. Comm. pp. 434-435.

Richmond, T. G.. (1999). Activation of Unreactive Bonds and Organic Synthesis, edited by S. Murai, pp. 243-269. New York: Springer.
Oster, S. S. \& Jones, W. D. (2004). Inorg. Chim. Acta, 357, 1836-1846.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Torrens, H. (2005). Coord. Chem. Rev. 249, 1957-1985.
Villanueva, L., Arroyo, M., Bernès, S. \& Torrens, H. (2004). Chem. Comm. pp. 1942-1943.

