# metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## William D. Jones,<sup>a</sup> Juventino Garcia<sup>b</sup> and Hugo Torrens<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, University of Rochester, Rochester, NY 14627, USA, and <sup>b</sup>Facultad de Química, UNAM, Ciudad Universitaria, 04510 México DF, Mexico

Correspondence e-mail: torrens@servidor.unam.mx

#### **Key indicators**

Single-crystal X-ray study T = 193 K Mean  $\sigma$ (C–C) = 0.005 Å R factor = 0.022 wR factor = 0.052 Data-to-parameter ratio = 10.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Bis[ $\mu$ -2,3,5,6-tetrafluoro-4-(trifluoromethyl)benzenethiolato]bis[( $\eta^4$ -3,5-cyclooctadiene)rhodium(I)]

In the structure of the title compound,  $[Rh_2(C_7F_7S)_2(C_8H_{12})_2]$ , important geometric parameters are  $Rh \cdot \cdot Rh = 2.9595$  (3) Å, mean Rh-S = 2.3949 (8) Å, mean S-C = 1.764 (3) Å and mean S-Rh-S = 87.37 (3)°. The S-Rh-S planes intersect at an angle of 117.4 (3)°.

### Comment

We have a long-standing interest in dinuclear transition metal complexes bearing fluorinated thiolates (Garcia *et al.*, 1993; Arroyo *et al.*, 2000; Villanueva *et al.*, 2004), since this type of compound is relevant, for example, to the development of chemical systems involving C–F bond activation (Richmond, 1999; Torrens, 2005) or to the study of fluorous biphasic catalytic processes (Barthel-Rosa & Gladysz, 1999). While working with this class of compounds, we have found that the metathetical reactions of  $[(C_8H_{12})Rh(\mu-OMe)_2Rh(C_8H_{12})]$ with HSC<sub>6</sub>F<sub>4</sub>CF<sub>3</sub>-4, or  $[(C_8H_{12})Rh(\mu-Cl)_2Rh(C_8H_{12})]$  with Pb(SC<sub>6</sub>F<sub>4</sub>CF<sub>3</sub>-4)<sub>2</sub>, give rise to the expected title dinuclear complex  $[(C_8H_{12})Rh(\mu-SC_6F_4CF_3-4)_2Rh(C_8H_{12})]$ , (I).



The single-crystal X-ray structure analysis of (I) (Fig. 1) shows it to adopt a *syn-endo* geometry. The coordination around each Rh atom is approximately square-planar (Table 1). The intermetallic distance of 2.9595 (3) Å is too

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 20 September 2005 Accepted 30 September 2005 Online 8 October 2005



Figure 1

A view of the structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.



Figure 2 The definitions of the angles  $A_2$  and  $A_3$  used in Table 2.

large to indicate interaction between metal atoms (Cotton & Felthouse, 1981). The coordination planes through the Rh and S atoms are folded along the  $S \cdots S$  vector at a dihedral angle of 117.4 (3)°. The observed  $Rh \cdots Rh$  distance, as well as the dihedral angle, agree well with the values reported for other known examples (Table 2). The Rh-S [range 2.3917 (8)-2.3977 (8) Å] and S···S [3.308 (3) Å] distances are in good agreement with those observed previously (Cruz-Garritz et al., 1991, 1984; Bonnet et al., 1977; Hill et al., 1977). The S atoms have a tetrahedral geometry. The C-C distances in the aromatic ring fall in the normal range of 1.36-1.39 Å (Allen et al., 1987), and the cyclooctadiene rings show shorter C-Cdistances for the metal-bound olefins (1.38–1.40 Å).

Possible structures for this class of compound include synendo, syn-exo, bent-anti, planar-syn and planar-anti (Aullón et al., 1998). As mentioned above, the fluorinated benzene

rings of the thiolate bridges are in a syn-endo configuration with respect to the four-membered [RhS]<sub>2</sub> core, and the mean planes of the benzene rings are approximately perpendicular to the  $S \cdots S$  vector. For comparison, several bis-thiolate complexes of the type  $[Rh(dippe)(\mu-SR)]_2$ , where dippe =  ${}^{i}Pr_{2}PCH_{2}CH_{2}P^{i}Pr_{2}$ , R = H, Me, cyclohexyl, o-biphenyl or phenyl, or  $(SR)_2 = SCH_2CH_2CH_2S$ , have been synthesized and characterized by single-crystal X-ray diffraction (Oster & Jones, 2004). All  $[Rh(dippe)(\mu-SR)]_2$  complexes except  $[Rh(dippe)(\mu$ -SPh)]<sub>2</sub> exhibit bent geometries (the exception is planar), while the orientation of the thiolate substituents changes with increasing steric bulk. Note that three of the complexes adopt the syn-endo geometry observed in (I).

<sup>1</sup>H and <sup>31</sup>P NMR spectroscopies indicate that both ring inversion and sulfur inversion occur among the members of the series, which allows them to access several isomeric forms when they are in solution.

## **Experimental**

Compound (I),  $[Rh_2(\mu-SC_6F_4CF_3-4)_2(cod)_2]$ , was prepared as follows. To a solution of  $[Rh_2(\mu-Cl)_2(cod)_2]$  (cod is cyclooctadiene) (150 mg, 0.3 mmol) in acetone (25 ml) was added a solution of  $Pb(SC_6F_4CF_3-4)_2$  (218 mg, 0.3 mmol) dissolved in acetone (25 ml). The reaction mixture rapidly turned red. A red precipitate formed, and this was filtered off and dried under vacuum to give  $[Rh_2(\mu SC_6F_4CF_3-4)_2(cod)_2$ ]. Single crystals of (I) were obtained by slow evaporation of an acetone solution under a stream of  $N_2$  (yield 92%; m.p. 513-515 K). Analysis calculated for C<sub>30</sub>H<sub>24</sub>F<sub>14</sub>S<sub>2</sub>Rh<sub>2</sub>: C 39.13, H 2.61, S 6.95%; found: C 39.10, H 2.65, S 7.04. IR (cm<sup>-1</sup>): 1639 (m), 1474 (s), 1323 (s), 978 (m), 855 (w), 714 (m). <sup>1</sup>H NMR ( $d_6$ -acetone,  $\delta$ , p.p.m.): 2.837 (m, CH<sub>2</sub>), 2.871 (m, CH<sub>2</sub>), 4.70 (s, CH). <sup>19</sup>F NMR (d<sub>6</sub>acetone, δ, p.p.m.): -57.41 (s, CF<sub>3</sub>), -131.19 (m, F-2,6), -144.97 (m, F-3,5).

### Crystal data

| $[Rh_2(C_7F_7S)_2(C_8H_{12})_2]$  | $D_x = 1.994 \text{ Mg m}^{-3}$           |
|-----------------------------------|-------------------------------------------|
| $M_r = 920.43$                    | Mo $K\alpha$ radiation                    |
| Monoclinic, $P2_1/c$              | Cell parameters from 4620                 |
| a = 12.5718 (6) Å                 | reflections                               |
| $b = 19.5538 (10) \text{\AA}$     | $\theta = 5.3-46.5^{\circ}$               |
| c = 13.3217 (7)  Å                | $\mu = 1.32 \text{ mm}^{-1}$              |
| $\beta = 110.5470 \ (10)^{\circ}$ | T = 193 (2) K                             |
| $V = 3066.5 (3) \text{ Å}^3$      | Prism, red                                |
| Z = 4                             | $0.32 \times 0.32 \times 0.28 \text{ mm}$ |
|                                   |                                           |

### Data collection

Bruker SMART CCD area-detector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan\_ (SADABS; Blessing, 1995)  $T_{\min} = 0.613, \ T_{\max} = 0.691$ 13638 measured reflections

## Refinement

Refinement on  $F^2$  $R[F^2 > 2\sigma(F^2)] = 0.022$ wR(F<sup>2</sup>) = 0.052 S = 1.044402 reflections 433 parameters H-atom parameters constrained

4402 independent reflections 3998 reflections with  $I > 2\sigma(I)$  $R_{\rm int}=0.018$  $\theta_{\rm max} = 23.3^{\circ}$  $h = -11 \rightarrow 13$  $k = -19 \rightarrow 21$  $l = -14 \rightarrow 14$ 

 $w = 1/[\sigma^2(F_0^2) + (0.0245P)^2]$ + 3.0986P] where  $P = (F_0^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} = 0.001$  $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$ 

## Table 1

| Selected | geometric | parameters ( | (Å. °` | ).      |
|----------|-----------|--------------|--------|---------|
| Sereerea | Beometrie | parameters   | (,     | <i></i> |

| Rh1-C2      | 2.132 (3)  | Rh2-C14    | 2.138 (3)   |
|-------------|------------|------------|-------------|
| Rh1-C1      | 2.135 (3)  | Rh2-C9     | 2.143 (3)   |
| Rh1-C5      | 2.146 (3)  | Rh2-C13    | 2.149 (3)   |
| Rh1-C6      | 2.155 (3)  | Rh2-S2     | 2.3917 (8)  |
| Rh1-S1      | 2.3927 (8) | Rh2-S1     | 2.3976 (8)  |
| Rh1-S2      | 2.3977 (8) | S1-C17     | 1.762 (3)   |
| Rh2-C10     | 2.135 (3)  | S2-C24     | 1.765 (3)   |
|             |            |            |             |
| C2-Rh1-C1   | 37.90 (12) | C9-Rh2-S2  | 89.23 (10)  |
| C5-Rh1-C6   | 37.86 (12) | S2-Rh2-S1  | 87.38 (3)   |
| C1-Rh1-S1   | 91.37 (9)  | C17-S1-Rh1 | 112.54 (10) |
| C2-Rh1-S2   | 149.71 (9) | C17-S1-Rh2 | 105.47 (9)  |
| S1-Rh1-S2   | 87.36 (3)  | Rh1-S1-Rh2 | 76.31 (2)   |
| C10-Rh2-C9  | 38.06 (13) | C24-S2-Rh2 | 114.32 (10) |
| C14-Rh2-C13 | 37.58 (13) | C24-S2-Rh1 | 111.95 (9)  |
| C10-Rh2-S2  | 95.16 (10) |            |             |

Table 2

Selected angles (°), distances (Å) and sums of angles (mean values) about the S atom in  $[Rh(\mu-SR)(L_n)]_2$  ( $L_1 = cod$ ,  $L_2 = dippe)$  complexes.

| $\overline{SR, L_n}$                                                                                                                      | Isomer                              | $A_1^{\dagger}$                                        | $A_2$ ‡                 | $A_3$ ‡                                             | $Rh{\cdots}Rh$          | S···S                         |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|-------------------------|-----------------------------------------------------|-------------------------|-------------------------------|
| $SC_6F_5, L_1$                                                                                                                            | syn–endo                            | 311.7                                                  | 118.4                   | 87.4, 89.5                                          | 2.954                   | 3.369§                        |
| $SC_6HF_4, L_1$                                                                                                                           | syn–endo                            | 313.0<br>296.0                                         | 117.8                   | 87.6, 89.8                                          | 2.956                   | 3.330¶                        |
| $SC_7F_7, L_1$                                                                                                                            | syn–endo                            | 294.3<br>302.6                                         | 117.4                   | 86.0, 91.4                                          | 2.960                   | 3.308††                       |
| SH, <i>L</i> <sub>2</sub><br>SCH <sub>3</sub> , <i>L</i> <sub>2</sub>                                                                     | <i>syn–exo</i><br>bent– <i>anti</i> | 302.5<br>297.6 <sub>endo</sub><br>327.7 <sub>exo</sub> | 136.0<br>124.6          | 36.0<br>83.2 <sub>endo</sub><br>16.9 <sub>exo</sub> | 3.281<br>3.298          | 3.016‡‡<br>3.299‡‡            |
| $\begin{array}{l} {\rm SC}_{6}{\rm H}_{11},L_{2} \\ {\rm S}_{2}{\rm C}_{3}{\rm H}_{6},L_{2} \\ {\rm SC}_{6}{\rm H}_{5},L_{2} \end{array}$ | syn–endo<br>syn–endo<br>planar–anti | 306.9<br>289.4<br>301.0                                | 126.4<br>129.1<br>180.0 | 86.0<br>80.6<br>77.8                                | 3.238<br>3.243<br>3.634 | 3.299‡‡<br>3.171‡‡<br>3.231‡‡ |

†  $A_1$  is the sum of X−S−X angles at S. ‡ The angles are defined as shown in Fig. 2. § Cruz-Garritz *et al.*, (1984). ¶ Cruz-Garritz *et al.*, (1991). †† This work. ‡‡ Oster & Jones, (2004).

H atoms were positioned geometrically, with C-H distances in the range 0.99–1.00 Å and with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve

structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Financial assistance from CONACYT (44494-Q) and DGAPA-UNAM (IN-119305-3) is gratefully acknowledged, as is the National Science Foundation (Nos. CHE0414325 and OISE0102217). We thank J. M. German for his assistance.

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Arroyo, M., Bernes, S., Richards, R. L., Rius, J. & Torrens, H. (2000). J. Organomet. Chem. 599, 170–177.
- Aullón, G., Ujaque, G., Lledos, A., Alvarez, S. & Alemany, P. (1998). Inorg. Chem. 37, 804–813.
- Barthel-Rosa, L. P. & Gladysz, J. A. (1999). Coord. Chem. Rev. 190–192, 587–605.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bonnet, J. J., Kalck, Ph. & Poilblanc, R. (1977). Inorg. Chem. 16, 1514– 1518.
- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cotton, F. A. & Felthouse, T. R. (1981). Inorg. Chem. 20, 2703-2708.
- Cruz-Garritz, D., Garcia-Alejandre, J., Poilblanc, R., Thorez, A., Alvarez, C., Toscano, R. & Torrens, H. (1991). *Transition Met. Chem.* **16**, 130–135.
- Cruz-Garritz, D., Leal, J., Rodriguez, B. & Torrens, H. (1984). Transition Met. Chem. 9, 284–285.
- Garcia, J. J., Torrens, H., Adams, H., Bailey, N. A., Shacklady, A. & Maitlis, P. M. (1993). J. Chem. Soc. Dalton Trans. pp. 1529–1536.
- Hill, R., Kelly, B. A, Kennedy, F. G., Knox, S. A. R. & Woodward, P. (1977). J. Chem. Soc. Chem. Comm. pp. 434–435.
- Richmond, T. G. (1999). Activation of Unreactive Bonds and Organic Synthesis, edited by S. Murai, pp. 243–269. New York: Springer.
- Oster, S. S. & Jones, W. D. (2004). Inorg. Chim. Acta, 357, 1836-1846.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Torrens, H. (2005). Coord. Chem. Rev. 249, 1957-1985.
- Villanueva, L., Arroyo, M., Bernès, S. & Torrens, H. (2004). Chem. Comm. pp. 1942–1943.